
LECTURE NOTES

ECO 613/614

FALL 2007

KAREN A. KOPECKY

Numerical Differentiation

The simplest way to compute a function’s derivatives numerically is to use finite differ-

ence approximations. Suppose we are interested in computing the first and second deriva-

tives of a smooth function f : R→ R. The definition of a derivative,

f ′(x) = lim
h→0

f(x + h)− f(x)

h
,

suggests a natural approximation. Take a small number h, (more on how small latter) and

f ′(x) ≈ f(x + h)− f(x)

h
. (1)

This is the easiest and most intuitive finite difference formula and it is called the for-

ward difference. The forward difference is the most widely used way to compute numerical

derivatives but often it is not the best choice as we will see. In order to compare to alterna-

tive approximations we need to derive an error bound for the forward difference. This can

be done by taking a Taylor expansion of f ,

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + · · · (2)

A little manipulation yields

f ′(x) =
f(x + h)− f(x)

h
+ O(h). (3)

We say that this approximation is first-order accurate since the dominate term in the trun-

cation error is O(h).

An alternative formula to the forward difference is to use a two-sided difference or center

difference. The center difference formula can be derived by taking the two second-order

Taylor series

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(x) + O(h3), (4)

1

and

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x) + O(h3), (5)

and subtracting the second series from the the first and dividing by 2h, obtaining

f ′(x) =
f(x + h)− f(x− h)

2h
+ O(h2). (6)

Notice that the center difference approximation is second-order accurate since the dom-

inate term in its truncation error is O(h2). Thus the center difference is more accurate than

the forward difference due to its smaller truncation error. For one-dimensional case it is

also just as costly to compute (they both require two function evaluations) and therefore

should almost always be chosen over the forward difference approximation. Unfortunately

the usual tradeoff between accuracy and efficiency comes into play though as we increase

the dimensionality of f . If f : Rn → Rm then computing the Jacobian matrix using the

forward difference requires m(n+1) function evaluations, while using the center difference

requires 2mn function evaluations. So center differences take approximately twice as long

to compute when n is large.

Three-point approximations can also be derived. Suppose we take the points h, x + h,

and x + αh and write our approximate to f ′ as

f ′(x) ≈ af(x) + bf(x + h) + cf(x + αh).

Using the Taylor expansions of f(x + h) and f(x + αh) around x and applying the mean

value theorem, there exists x1 ∈ [x, x + h] and x2 ∈ [x, x + αh] such that

af(x) + bf(x + h) + cf(x + αh) = (a + b + c)f(x) + h(b + cα)f ′(x)

+
h2

2
(b + cα2)f ′′(x) +

h3

6
[bf ′′′(x1) + cα3f ′′′(x2)]

We now can see how to choose a, b, and c to make the right-hand-side approximately f ′(x).

They must satisfy

a + b + c = 0,

b + cα = 1/h,

and

b + cα2 = 0.

2

Solving yields

a =
α2 − 1

α(1− α)h
,

b = − α2

α(1− α)h
,

and

c =
1

α(1− α)h
.

First note the in fact the center difference is the special case of the three point approxi-

mation when α = −1. Second notice that the error from this approximation is O(h2). Not

necessarily an improvement over the center difference but more costly to compute (we now

have to do three function evaluations instead of two). Why would we want to use it?

One situation is when we want to approximate the derivative at the boundary of the

domain. In this situation the center difference is not an option since it requires evaluating

the function outside of the domain. We could choose to use the forward or equivalent of the

forward but with h < 0 (called the backward difference) at these endpoints. But what if we

want to obtain a more accurate approximation? In this case it may payoff to use the three

point approximation. Often α is set to 2 yielding

f ′(x) =
1

2h
[−3f(x) + 4f(x + h)− f(x + 2h)] + O(h2).

This will generate a second-order accurate approximate to the derivative at either endpoint

by setting h greater than or less than 0.

We can find finite difference approximations for second derivatives and other higher

order derivatives using a similar approach. For example, a centered finite difference ap-

proximation to the second derivative can be derived by adding together the two Taylor

series

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + O(h4), (7)

and

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(x) + O(h4), (8)

and solving for f ′′(x). This yields

f ′′(x) =
f(x + h)− 2f(x) + f(x− h)

h2
+ O(h2).

3

In addition we can derive general second-order accurate approximations to f ′′ using weighted

sums of f evaluated at various points, only now we would need 4 points instead of 3. In

an analogous way to the f ′ case we can use these (usually more costly) general formulas to

handle special situations like approximating the second derivative at the boundary of the

domain.

How to Choose h

Notice that the truncation error that arises from the finite difference approximations is

increasing in h suggesting that h should be as small as possible to reduce this error. But

also notice that the computation of the finite differences involves the computer taking dif-

ferences and sums of floating-point numbers and dividing the result by a small number,

h. This is equivalent to multiplying the result by a large number. The multiplication will

magnify any round-off errors in the numerator. The smaller h is the larger is this magni-

fication. Hence in fact h should be chosen to minimize total error which includes both the

error that arises from truncation (and is decreasing in h) and the round-off error that arises

from doing floating-point arithmetic with floating-point numbers (and is increasing in h).

Let us first look at the case of the forward difference. We want to derive an upper

bound on the roundoff error incurred when computing the approximation. Let f̃(x) be the

numerical representation of f(x), and assume that the only error arising in the computation

of f is round-off error. Denote machine epsilon by u and

Lf = sup
x∈[x,x+h]

|f(x)|

so that

| ˜f(x + h)− f(x + h)| ≤ uLf , (9)

and

|f̃(x)− f(x)| ≤ uLf , (10)

and the

|fl(˜f(x + h)− f̃(x))− (˜f(x + h)− f̃(x))| ≤ 2uLf , (11)

Then the roundoff error is bounded by∣∣∣∣∣
˜f(x + h)− f̃(x)

h
− f(x + h)− f(x)

h

∣∣∣∣∣ ≤
4uLf

h
. (12)

4

Notice that if h is too small relative to u, the error can easily be huge. If you pick h = u your

error is 4Lf . The total roundoff error increases as we decrease the bandwith.

Now we need an upper bound on the truncation error. We can show, using the mean

value theorem, that there exists c ∈ [x, x + h] such that

f ′(x) =
f(x + h)− f(x)

h
− f ′′(c)

2
h. (13)

Let

M = sup
x∈[x,x+h]

|f ′′(x)|.

Then the truncation error is bounded by
∣∣∣∣
f(x + h)− f(x)

h
− f ′(x)

∣∣∣∣ ≤
Mh

2
. (14)

Notice that the truncation error decreases as we decrease h. Smaller values of h improve

our approximation.

As seen above, choosing h requires a trade-off between more round-off error, on the

one hand, and more truncation error, on the other. Thus the optimal h is the one which

minimizes the sum of these two errors. Combining the roundoff and truncation error we

get that the total error incurred in the computation of f ′(x) using the forward difference is

bounded by ∣∣∣∣∣
˜f(x + h)− f̃(x)

h
− f ′(x)

∣∣∣∣∣ ≤
4uLf

h
+

Mh

2
(15)

Minimizing this bound with respect to h leads to an optimal bandwidth of

h∗ =

(
8Lfu

M

)1/2

. (16)

In practice, we will usually not be able to compute Lf or M but a good approximation is to

set the optimal bandwidth to

h? ≈
√

Lf

M

√
u ≈ |x|√u

This rule works well as long as x is not to small. Small x will lead us to bandwidth’s that

are too small for floating point operations. Thus the general rule of thumb is to set

h? = max(|x|, 1)
√

u.

5

For double precision computing,
√

u ≈ 10−8. Finally we can compute the upper bound on

the total absolute error incurred in the computation,

4uLfM
1/2

(8uLf)
1/2

+
M (8uLf)

1/2

2M1/2
= 2

√
2LfMu

and the relative error is
2
√

2LfMu

|f ′(x)| ≈
√

LfM

|f ′(x)|
√

u ≈ √
u.

So using the forward difference with the optimal bandwidth, you shouldn’t expect your

derivatives to accurate to more than about 8 significant digits.

If, instead of using the forward difference, we use the center difference formula we have

a different optimal bandwidth. The derivation is identical to that for the forward difference.

By a similar argument to before we can derive an upper bound on the roundoff error
∣∣∣∣∣
˜f(x + h)− ˜f(x− h)

2h
− f(x + h)− f(x− h)

2h

∣∣∣∣∣ ≤
4uLf

2h
. (17)

By using the center difference formula, we do not modify the order of the rounding error.

This should not be surprising since the motivation for the center difference formula is to

reduce errors due to curvature whereas the rounding error is due to the computer accuracy.

Now we need an upper bound on the truncation error. Again we can show, using the

mean value theorem, that there exists c ∈ [x, x + h] such that

f ′(x) =
f(x + h)− f(x− h)

2h
− f ′′′(c)

6
h2. (18)

Let

S = sup
x∈[x−h,x+h]

|f ′′′(x)|.

Then the truncation error is bounded by
∣∣∣∣
f(x + h)− f(x− h)

2h
− f ′(x)

∣∣∣∣ ≤
Sh2

6
. (19)

The total error in the computation of f ′(x) is now bounded by:
∣∣∣∣∣
˜f(x + h)− ˜f(x− h)

h
− f ′(x)

∣∣∣∣∣ ≤
2uLf

h
+

Sh2

6
. (20)

Minimizing with respect to h leads to the optimal bandwidth:

h∗ =

(
12uLf

S

)1/3

. (21)

6

Since, in practice, we cannot compute Lf or S notice that a good approximation to h∗ is

h∗ ≈
(

Lf

S

)1/3

u1/3 ≈ |x|u1/3.

As in the case of the forward difference it is best to rule out h becoming too small so the

rule of thumb is to set

h∗ = max(|x|, 1)u1/3.

For double precision, u1/3 is approximately 10−6. Finally we can compute the upper bound

on the total error incurred in the computation,

4

(
SL2

f

12

)1/3

u2/3 (22)

which is on the order of 10−11 in double precision. So we can expect are center difference

approximation to be accurate to approximately the first 11 digits.

There is one further problem that can arise. If the floating point value of x + h does not

equal x + h but x + h + e then we are actually using the approximation

f(x + h + e)− f(x)

h
=

f(x + h + e)− f(x + h)

e

e

h
+

f(x + h)− f(x)

h

Notice that this is approximately

f ′(x + h)
e

h
+ f ′(x) ≈

(
1 +

e

h

)
f ′(x).

If the rounding error e is on the order of magnitude of u and h is on the order of magnitude

of
√

u we have now introduced an relative error on the order of
√

u into the calculation. To

avoid this problem it is recommended that you define h as follows. For one-sided (forward

or backward) difference first define h̃ as

h̃ =
√

u ∗max(|x|, 1)

then set xh as

xh = x + h̃

and finally set

h = xh− x.

7

For two-sided (or center-difference) define h as

h = u1/3 max(|x|, 1)

then set xh1 as

xh1 = x + h

and

xh0 = x− h

and finally

hh = xh1− xh0.

Then hh is 2h without the roundoff error. For the second derivative approximation, the

same reasoning can be used to derive a reasonable value for h. The value is

h = u1/4 max(|x|, 1).

A similar procedure for removing roundoff error in the computation of x+h and x−h should

be used. All of this reasoning also extends to any other finite-difference approximations

used such as the other three point approximations discussed above.

References

• Miranda, Mario J. and Paul L. Fackler. 2002. Applied Computational Economics

and Finance. Cambridge, MA: MIT Press.

• Nocedal, Jorge and Stephen J. wright. 1999. Numerical Optimization. Springer-

Verlag New York, Inc.

8

