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1 Introduction

Welfare theorems are concerned with the conditions under which decentralized de-
cision making can lead to a socially optimal outcome, or at least one that cannot
be unambiguously improved upon by making everybody better off. The idea that a
market economy (i.e. an economy based on private ownership, mutually agreed ex-
change, and competition) achieves a socially desirable outcome, is often attributed
to Smith (1776). In fact, it was expressed a bit earlier than that in Chydenius (1765).
What we’ll be discussing here is a mathematical model of an idealized competitive
economy, establishing two theorems. The first claims that any competitive equi-
librium is Pareto efficient; the second that any Pareto efficient allocation is part
of some competitive equilibrium. This mathematical approach was pioneered by
Walras (1874) and perfected by Debreu (1959).

2 The first welfare theorem

Our commodity space will be a normed vector space X. Prices will be represented
by a continuous linear functional φ : X → R.

Let X be a normed vector space. Let there be I consumers and J producers. Each
consumer i has a non-empty set of options Xi ⊂ X. If xi ∈ Xi we say that xi is
available (but not necessarily affordable) to i. Each producer j has a non-empty
set Yj ⊂ X. If yj ∈ Yj we say that yj is available to j.



A feasible allocation is a profileX = (x1, x2, . . . , xI) and a profileY = (y1, y2, . . . , yJ)

such that xi ∈ Xi for all i = 1, 2, . . . , I, yj ∈ Yj for all j = 1, 2, . . . , J and
I∑

i=1

xi =
J∑

j=1

yj.

A feasible consumption allocation is a profile X = (x1, x2, . . . , xI) such that
xi ∈ Xi for all i = 1, 2, . . . , I and there exists a profile Y = (y1, y2, . . . , yJ) such that
yj ∈ Yj for all j = 1, 2, . . . , J and

I∑
i=1

xi =
J∑

j=1

yj.

Each consumer i comes equipped with a utility function ui : Xi → R.

We will say that consumer i’s choice xi ∈ Xi maximizes utility given the pricing
function φ if it is such that φ(x) > φ(xi) for all x ∈ Xi such that ui(x) > ui(xi).
Equivalently, ui(x) > ui(xi) and x ∈ Xi together imply φ(x) > φ(xi).

Notice that there is no need to raise the question whether a consumer is spending
all his wealth (or more). We simply define the wealth of consumer i as φ(xi).

We say that producer j maximizes profits given φ if his choice yj ∈ Yj is such that
φ(yj) ≥ φ(y) for all y ∈ Yj. In other words, if φ(y) > φ(yj) then y /∈ Yj.

A competitive equilibrium is a feasible allocation (X ,Y) and a continuous linear
functional φ such that xi maximizes utility for each i = 1, 2, . . . , I and yj maximizes
profits for all j = 1, 2, . . . , J .

What we want to do is to show that an allocation that is Pareto superior to a com-
petitive equilibrium allocation is not feasible. We do this in a couple of steps.

Consider a competitive equilibrium (X ∗,Y∗, φ) and a Pareto superior alternative
allocation (X ,Y). By definition, ui(xi) ≥ ui(x

∗
i ) for all i and ui(xi) > ui(x

∗
i ) for some

i, say i = k. By utility maximization, φ(xk) > φ(x∗
k). But it is not obvious that

φ(xi) ≥ φ(x∗
i ) for all i. For that we assume local non-satiation of preferences.
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A utility function ui is said to exhibit local non-satiation if for any x ∈ Xi and any
ε > 0 there is a y ∈ Xi such that ∥x− y∥ < ε and ui(y) > ui(x).

Now assume that ui(xi) ≥ ui(x
∗
i ) and that ui exhibits local non-satiation. We want

to show that φ(xi) ≥ φ(x∗
i ). So suppose φ(xi) < φ(x∗

i ), hoping that this will lead to a
contradiction. By the continuity of φ, there exists an ε > 0 such that for all y ∈ Xi

such that ∥xi − y∥ < ε we have φ(y) < φ(x∗
i ). By local non-satiation, one such y is

such that ui(y) > ui(xi) ≥ ui(x
∗
i ). Hence, by utility maximization, φ(y) > φ(x∗

i ), a
contradiction.

Thus we may conclude that
I∑

i=1

φ(xi) >
I∑

i=1

φ(x∗
i ) =

φ

(
I∑

i=1

x∗
i

)
= φ

(
J∑

j=1

y∗j

)
=

J∑
j=1

φ(y∗j )

Because Y∗ maximizes profits, we know that
J∑

j=1

φ(y∗j ) ≥
J∑

j=1

φ(yj)

and we may conclude that

φ

(
I∑

i=1

xi

)
> φ

(
J∑

j=1

yj

)
and hence that

I∑
i=1

xi ̸=
J∑

j=1

yj.

We now have a proof of...

Theorem 1 (First Welfare Theorem) Let (X ,Y , φ) be a competitive equilibrium
and suppose the utility functions exhibit local non-satiation. Then the allocation
(X ,Y) is Pareto optimal.
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3 The second welfare theorem

For the purpose of proving the second welfare theorem, we will say that consumer
i’s choice xi ∈ Xi minimizes costs given the pricing function φ if it is such that
φ(x) ≥ φ(xi) for all x ∈ Xi such that ui(x) ≥ ui(xi). Equivalently, ui(x) ≥ ui(xi) and
x ∈ Xi together imply φ(x) ≥ φ(xi).

In this context, the fact that our definition of utility maximization (or cost mini-
mization) makes no reference to endowments or wealth is even less problematic. If
you insist on having an endowment profile, just make the endowment profile equal
to the given allocation!

Theorem 2 (The Hahn-Banach Separation Theorem) Let X be a normed vec-
tor space. Let A ⊂ X and B ⊂ X be non-empty and convex. Let A be open. Suppose
A ∩ B = ∅. Then there exists a continuous linear functional φ : X → R and a
constant α ∈ R such that

φ(x) > α ≥ φ(y)

for all x ∈ A and all y ∈ B.

Proof. See this document or this one.

Consider now a Pareto optimal allocation (X ∗,Y∗). This means that it is feasible
and that there is no feasible Pareto superior alternative.

For each i, define Ai ⊂ Xi via

Ai = {x ∈ Xi : ui(x) > ui(x
∗
i )}.

We would like Ai to be non-empty, convex and open. For that purpose, we assume
(local) non-satiation, convexity and continuity of preferences. Local non-satiation
evidently guarantees that Ai is not empty.

We say that ui : Xi → R represents convex preferences if Xi is convex and if
whenever ui(x) ≥ ui(y) and 0 ≤ λ ≤ 1 we have ui(λx+ (1− λ)y) ≥ ui(y).
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We say that ui is continuous if for any open set O ⊂ R the set {x ∈ Xi : ui(x) ∈ O}
is an open subset of X. (Note that it has to be open as a subset of X, not just as a
subset of Xi!)

Now define A ⊂ X via

A = {x ∈ X : x =
I∑

i=1

x̃i and x̃i ∈ Ai}

and it is not hard to verify that A is non-empty, convex and open.

Next, define the production set Y via

Y = {y ∈ X : y =
J∑

j=1

yj and yj ∈ Yj}.

We want this set, too, to be non-empty and convex. So we just go ahead and assume
that it is convex. (We have already assumed that the Yjs are non-empty.)

By Pareto optimality of (X ∗,Y∗), A and Y are disjoint. Hence they satisfy the pre-
misses of Theorem 2 and we have a constant α and a continuous linear functional
φ such that

φ(x) > α ≥ φ(y)

for all x ∈ A and y ∈ Y . Our job now is to show that X ∗ maximizes utility and that
Y∗ maximizes profits given φ.

First we show that for any profile X such that ui(xi) ≥ ui(x
∗
i ) we have

φ

(
I∑

i=1

xi

)
≥ α.

Local non-satiation means for any ε > 0 there is an x̃i such that ∥x̃i − xi∥ < ε and
ui(x̃i) > ui(xi) and hence x̃i ∈ Ai. Defining

x̃ =
I∑

i=1

x̃i,

5



it is clear that x̃ ∈ A and hence that φ(x̃) > α. Taking limits as ε → 0, we get the
desired result.

Notice that, annoyingly, we don’t exploit strict separation. Is there any way of doing
that in order to simplify the proof?

Incidentally, we may apply our result to X ∗ itself. Thus

φ

(
I∑

i=1

x∗
i

)
≥ α.

On the other hand,
∑I

i=1 x
∗
i =

∑J
j=1 y

∗
j which is a member of Y by feasibility. Hence

φ

(
I∑

i=1

x∗
i

)
≤ α

and of course it follows that

φ

(
I∑

i=1

x∗
i

)
= φ

(
J∑

j=1

y∗j

)
= α.

Next, we show that if xi is such that ui(xi) ≥ ui(x
∗
i ) then φ(xi) ≥ φ(x∗

i ). Apparently

φ

(
xi +

∑
k ̸=i

x∗
k

)
≥ α = φ

(
x∗
i +

∑
k ̸=i

x∗
k

)

and the result follows.

Of course, this isn’t quite what we wanted to show. This is cost minimization, not
utility maximization. To show utility maximization, we want to show that if xi ∈ Xi

and ui(xi) > ui(x
∗
i ) then φ(xi) > φ(x∗

i ). We already know that φ(xi) ≥ φ(x∗
i ). Could

it be that φ(xi) = φ(x∗
i )? Well, yes, unless we make a further assumption.

We say that the profile (X ,Y , φ) has the cheaper-bundle property if for each i

there is an x ∈ Xi such that φ(x) < φ(xi).

Now suppose, for a contradiction, that φ(xi) = φ(x∗
i ). By the cheaper-bundle prop-

erty, there is an x′
i ∈ Xi such that φ(x′

i) < φ(x∗
i ). By convexity of Xi we have a bundle
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x′′
i = λxi + (1 − λ)x′

i such that φ(x′′
i ) < φ(x∗

i ). By continuity of ui, if λ is sufficiently
close to 1 we have ui(x

′′
i ) > ui(x

∗
i ). This is inconsistent with cost minimization.

Finally, if yj ∈ Yj we have

φ

(
yj +

∑
k ̸=j

y∗k

)
≤ α = φ

(
y∗j +

∑
k ̸=j

y∗k

)
≤ α

and so Y∗ maximizes profits.

We have now proven...

Theorem 3 (Second welfare theorem) Suppose (X ∗,Y∗) is Pareto optimal, that
ui are continuous, exhibit local non-satiation and represent convex preferences. Sup-
pose the production set Y is convex. Then there is a φ such that X ∗ minimizes
costs and Y∗ maximizes profits. If, in addition, (X ∗,Y∗, φ) has the cheaper-bundle-
property, then X ∗ maximizes utility.

3.1 Inner product representation of continuous linear functionals

Continuous linear functionals are nice, but it would be even better if they could be
written as inner products in some sense. For Hilbert spaces, we have a very nice
representation theorem.

Theorem 4 (Riesz representation) Let (H , (·, ·)) be a Hilbert space and letφ : H →
R be a continuous linear functional. Then there is a unique y ∈ H such that
φ(x) = (x, y) for all x ∈ H .

Proof. Consider the sets

M = {x ∈ H : φ(x) = 0}

and
M⊥ = {x ∈ H : (x, y) = 0 for all y ∈ M}.
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Evidently M ∩M⊥ = {0}. Meanwhile, M⊥ is at most one-dimensional. To see this,
we will show that any two members of M⊥ are linearly dependent. So let x ∈ M⊥,
w ∈ M⊥. Suppose that at least one of them is not also a member of M so we do not
have φ(x) = φ(w) = 0. (If there is no such pair x, w then M⊥ ⊂ M and consequently
M⊥ = {0}.) Apparently

φ(φ(x)w − φ(w)x) = 0.

Hence (φ(x)w − φ(w)x) ∈ M . But it is also a member of M⊥, since M⊥ is a vector
space (why?). Hence

φ(x)w − φ(w)x = 0

but we assumed that φ(x) = φ(w) = 0 was not the case, so x and w must be linearly
dependent. Thus there exists a y0 ∈ M⊥ such that

M⊥ = {x ∈ H : x = αy0 for some α ∈ R}.

If y0 = 0, then evidently M = H and we can set y = 0. So suppose y0 ̸= 0. We are
now going to choose y as a member of M⊥. What does y have to be so that

φ(y0) = (y0, y)?

Since y ∈ M⊥, all we have to do is solve for α the following equation.

φ(y0) = (y0, αy0) = α∥y0∥2.

Thus
y = αy0.

where
α =

φ(y0)

∥y0∥2
.

But then (why?) we have
φ(x) = (x, y)

for all x ∈ M⊥. Finally, by the projection theorem, any z ∈ H can be written as

z = x+ w
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with x ∈ M and w ∈ M⊥. Evidently φ(z) = φ(x) + φ(w) = φ(w) because φ is linear
and x ∈ M . Meanwhile, (z, y) = (x + w, y) = (w, y) = φ(w) because x ∈ M and
y ∈ M⊥ and because, as we just established, φ(w) = (w, y) for all w ∈ M⊥. So we
have φ(z) = (z, y) for all z ∈ H . That takes care of existence. To show uniqueness,
suppose y1 ∈ H and y2 ∈ H are such that

(x, y1) = (x, y2)

for all x ∈ H . This of course means that

(x, y1 − y2) = 0

for all x ∈ H . In particular,

(y1 − y2, y1 − y2) = 0

and hence y1 − y2 = 0.

An example is the commodity space ℓ2, defined as the set of sequences of real num-
bers x = {xt}∞t=0 with

∞∑
t=0

x2
t < ∞

with inner product

(x, y) =
∞∑
t=0

xtyt.

and norm

∥x∥ =

√√√√ ∞∑
t=0

x2
t .

By the Riesz representation theorem, any continuous linear functional φ : ℓ2 → R
has the representation

φ(x) =
∞∑
t=0

ptxt

for some sequence p such that
∞∑
t=0

p2t < ∞.
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Another example is static but involves uncertainty. Let L2(Ω,F ,P) be the set of
contingent claims X : Ω → R such that

E[X2] < ∞

with inner product
(X, Y ) = E[XY ].

Now let φ : L2 → R be a continuous linear functional. Then Riesz’ theorem guaran-
tees that there is a square integrable random variable L : Ω → R such that

φ(X) = E[LX].
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